
Contents lists available at ScienceDirect

Magnetic Resonance Imaging

journal homepage: www.elsevier.com/locate/mri

Original contribution

Whole volume brain extraction for multi-centre, multi-disease FLAIR MRI
datasets☆

April Khademia,*, Brittany Reicheb, Justin DiGregorioa, Giordano Arezzaa, Alan R. Moodyc

a Image Analysis in Medicine Lab (IAMLAB), Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
bUniversity of Guelph, Guelph, ON N1G 2W1, Canada
c Department of Medical Imaging, University of Toronto, Toronto M5S 1A1, Canada

A R T I C L E I N F O

Keywords:
Magnetic Resonance Imaging (MRI)
Fluid Attenuation Inversion Recovery (FLAIR)
MRI
Brain extraction
Segmentation
Multicentre studies

A B S T R A C T

Automatic segmentation of the brain from magnetic resonance images (MRI) is a fundamental step in many
neuroimaging processing frameworks. There are mature technologies for this task for T1- and T2-weighted MRI;
however, a widely-accepted brain extraction method for Fluid-Attenuated Inversion Recovery (FLAIR) MRI has
yet to be established. FLAIR MRI are becoming increasingly important for the analysis of neurodegenerative
diseases and tools developed for this sequence would have clinical value. To maximize translation opportunities
and for large scale research studies, algorithms for brain extraction in FLAIR MRI should generalize to multi-
centre (MC) data. To this end, this work proposes a fully automated, whole volume brain extraction methodology
for MC FLAIR MRI datasets. The framework is built using a novel standardization framework which reduces
acquisition artifacts, standardizes the intensities of tissues and normalizes the spatial coordinates of brain tissue
across MC datasets. Using the standardized datasets, an intuitive set of features based on intensity, spatial lo-
cation and gradients are extracted and classified using a random forest (RF) classifier to segment the brain tissue
class. A series of experiments were conducted to optimize classifier parameters, and to determine segmentation
accuracy for standardized and unstandardized (original) data, as a function of scanner vendor, feature type and
disease type. The models are trained, tested and validated on 156 image volumes (∼8000 image slices) from two
multi-centre, multi-disease datasets, acquired with varying imaging parameters from 30 centres and three
scanner vendors. The image datasets, denoted as CAIN and ADNI for vascular and dementia disease, respectively,
represent a diverse collection of MC data to test the generalization capabilities of the proposed design. Results
demonstrate the importance of standardization for segmentation of MC data, as models trained on standardized
data yielded a drastic improvement in brain extraction accuracy compared to the original, unstandardized data
(CAIN: DSC=91% and ADNI: DSC=86% vs. CAIN: 78% and ADNI: 65%). It was also found that models created
from one scanner vendor based on unstandardized data yielded poor segmentation results in data acquired from
other scanner vendors, which was improved through standardization. These results demonstrate that to create
consistency in segmentations from multi-institutional datasets it is paramount that MC variability be mitigated to
improve stability and to ensure generalization of machine learning algorithms for MRI.

1. Introduction

Neurodegenerative diseases impact the well-being of those affected,
while presenting a large economic burden on healthcare systems. To
reduce this burden, the etiology and progression of these diseases must
be understood so that treatment can be applied early, before irrever-
sible brain damage has occurred. For this, researchers are investigating

magnetic resonance images (MRI) of the brain to identify precursors
and to further characterize neurodegenerative disease. White matter
lesions (WML) are one such pathological feature identified on MRI that
are associated with ischemic [1], vascular [2, 3], dementia [4] and
demyelinating [5] diseases.

To better understand the relationship between neurodegenerative
diseases and WML, images from large patient cohorts need to be
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analyzed and correlated with patient outcomes. Accurate and quanti-
tative measurement of WML volume, as well as other biomarkers such
as brain volume, can be extracted from large databases to model disease
progression, and to identify new risk factors [1, 6-10]. However,
manual biomarker measurement is subjective and extremely laborious,
especially for large-scale studies [11, 12]. Automated algorithms that
measure biomarkers are an ideal alternative, since they can compute
lesion volume and other quantitative metrics for thousands of patients
in an objective, accurate, and efficient manner.

Fluid-Attenuated Inversion Recovery (FLAIR) MRI is becoming in-
creasingly important for diagnosis and treatment of neurodegenerative
disease [1-5, 13]. This is because the cerebral spinal fluid (CSF) signal is
nulled, which emphasizes the appearance of WML, increasing the ease
of analysis [2, 14-16]. Many works have analyzed FLAIR via multi-
modality approaches that co-register FLAIR to T1- and T2-weighted
MRI. However, such methods increase image acquisition costs (multiple
scans) and error introduced during registration due to the differing
contrast appearances in the three sequences [17]. As FLAIR is routinely
acquired, methods dedicated solely to this sequence would have clinical
value.

Automatic WML segmentation frameworks have already been de-
veloped to analyze WML, for example [18-20]. Critical for robust ap-
plication of these algorithms is the preprocessing step of brain extrac-
tion. Brain extraction, or skull stripping, removes any non-brain tissues
from the image (i.e., skull and eyes), as they can interfere with WML
segmentation schemes. Moreover, brain extraction methods allow for
automated brain volume measurement.

There are existing brain extraction algorithms for other MR se-
quences, such as T1- and T2-weighted MRI [21-23]. In [21], the ROBEX
algorithm uses a machine learning approach that was trained on T1-
weighted data, which likely cannot generalize to FLAIR images due to
differences in intensities for tissues between sequences. The other
popular method, brain extraction tool (BET) [22], uses a deformable
model that is initialized at the centre of the brain volume, and expands
until it reaches a significant threshold. The threshold is often met as the
model passes through WML, and the resultant images tend to be under-
segmented. In [24], we explored these tools on FLAIR MRI, and found
that the segmentations were not optimal (average dice similarity of
56.58% for BET and 60.6% for ROBEX). In [23], a convolutional neural
network was used to perform brain extraction, but these models are
known to be computationally intensive, and the authors noted that
results were sensitive to cases where datasets had vastly different ac-
quisition parameters. Moreover, specialized hardware (GPUs) are
needed to run these algorithms, which are usually not available in
hospital systems, reducing clinical utility and translation of such
methods.

Few works have been developed to handle brain extraction in FLAIR
MRI. Some approaches are semi-automated requiring user input [19],
which is laborious and subjective. Others require the use of multiple
modalities (i.e. T1, T2, etc.) [25-27], but multi-sequence registration
can create segmentation errors [17]. In [25], the authors propose a
FLAIR-only MRI brain extraction method based on edge detection, the
local moment of inertia and morphological processing. The method was
validated on 30 cases, but was developed specifically for images from a
single centre, acquired with the same device and imaging parameters.
Therefore, it is unknown if the method will generalize to multicentre
datasets and the authors acknowledge this limitation in the conclusion
of their manuscript.

To combat these downfalls, this work presents a whole volume,
fully-automatic brain extraction approach designed using solely the
FLAIR modality, that is efficient and robust to multi-centre (MC) image
variability. To develop a method that is robust to MC variability can be
challenging, as differences between acquisition parameters, scanner
vendor hardware, reconstruction algorithms, and patient-dependent
artifacts creates significant variability in image properties within large
datasets. For example, there can be large differences in the distributions

of acquisition noise, intensity inhomogeneity, intensity non-standard-
ness, differences in voxel resolution, and patient orientation [28]. All of
these sources of variability affect the results of automated segmentation
algorithms [29].

The proposed work handles all of the challenges of MC analysis in
one framework. Images are standardized [30, 31], which reduces
variability in MC datasets by normalizing the intensity scale, suppres-
sing acquisition artifacts, and normalizing voxel resolution and patient
orientation. Using the standardized image volumes, brain extraction is
performed using a Random Forest (RF) classifier [32], based on an in-
tuitive feature set. After classification, mathematical morphology is
applied as a post-processing step to suppress false positives, which are a
common issue in machine learning-based approaches to brain extrac-
tion [21, 23]. This simple step deeply contrasts other approaches,
which require complex models to perform post-processing, such as
generative models or graph cuts [21].

In total, 156 image volumes with ground truths (approximately
8000 image slices) are used to train, test and validate the proposed
brain segmentation scheme. Experiments include optimization of clas-
sifier parameters, followed by the analysis of the effects of standardi-
zation, scanner vendor, and feature type on segmentation accuracy. The
FLAIR MRI dataset used in this work, is collected from two multi-centre
datasets from the Canadian Atherosclerosis Imaging Network (CAIN)
(vascular disease) [33] and the Alzheimer's Disease Neuroimaging In-
itiative (ADNI) (dementia disease) [34]. The cases selected for this
study were acquired at thirty centres with varying acquisition para-
meters and scanner vendors, and represent two different diseases.
Vascular disease can be associated with strokes, and large lesion bur-
dens, whereas dementia may be characterized by brain atrophy with
varying lesion loads. Validation using these images will demonstrate
the robustness of the framework across a diverse collection of images,
scanning hardware, imaging centres and diseases, which increases its
potential for clinical translation.

Because of image standardization, we hypothesis that a simple
feature set will generate accurate and robust automatic whole volume
brain segmentations on MC data. We also strongly believe that part of
the elegance of the solution, is in fact, in its simplicity. Variability from
patients and scanners have been systematically and deliberately re-
duced, which allows such a tool to generalize multi-institutional FLAIR
MRI from multiple diseases. Also, feature sets and classification sam-
pling strategies are chosen to maximize robustness. As will be shown,
the framework is robust to MC variability and has been designed with
simplified models and intuitive feature sets which are feasible due to
the novel image standardization framework.

This work will represent one of the first approaches to automatic
whole volume brain extraction in multicentre, multidisease FLAIR MRI,
validated on two MC and multi-disease datasets. Practical im-
plementation and clinical use is a major consideration of this design,
and it can be easily translated into routine clinical workflow. The in-
terpretable feature set allows for analysis of failures in a robust manner,
the minimal processing allows for real-time implementation that does
not require specialized hardware and dependence on only the FLAIR
sequence eliminates the reliance on other sequences.

The remainder to the paper is detailed as follows: Section 2 will
outline the methods and materials used for this work, which includes
description of the standardization framework, feature extraction, clas-
sifier sampling and construction, validation metrics, as well as the data
that is used. Section 3 outlines the optimization of the classifier para-
meters, followed by experiments conducted to analyze the effects of
image standardization, scanner vendor, and disease classification on
segmentation accuracy. Section 4 contains the discussions and
Section 5.

2. Methods and materials

Given an axial image volume, I(x,y,z), where x,y are the spatial
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coordinates of each slice, and z is the slice number, the goal of the brain
extraction algorithm is to find a binary segmentation mask b(x,y,z) that
identifies voxels from the brain tissue class. This mask may be multi-
plied (voxel-wise) by the original image in order to extract the brain
region from the whole volume. In this work, as shown in Fig. 1, several
steps are utilized to find the brain mask b(x,y,z). First, the data is pre-
processed using a novel standardization framework, that reduces noise,
standardizes the intensity scale, and normalizes spatial dimensions and
orientation. These steps are designed to systematically and deliberately
reduce each of the sources of variability in multi-centre FLAIR MRI.
Based on the standardized data, an intuitive feature set is extracted
from each voxel. Using an optimized random forest classifier, with
carefully designed sampling strategies, the segmentation model is
constructed to extract the brain for whole volume FLAIR MRI. A simple
morphological post-processing step is used to tidy the binary segmen-
tation mask b(x,y,z). This section briefly describes the standardization
framework presented in [30] and [31], followed by details of the pro-
cess of brain extraction, which is achieved through feature extraction,
classification and post-processing.

2.1. Standardization framework

Although access to data is growing, the ability to apply algorithms
on multicentre data has been limited due the multicentre effect (MCE):
different acquisition systems create differences in noise, intensity,
contrast and resolution in MC datasets. As algorithms are quantitative,
small changes in the images (i.e. intensity values) can have a large
negative impact on the reliability of the results. To manage variability
in MC FLAIR MRI data, a first-of-its kind standardization pipeline was
developed in [30] and [31] that reduces variability to improve per-
formance of image analysis and machine learning tools on MC data.
Most notably, it reduces noise and bias field, makes the intensity dis-
tributions of images consistent across and within imaging centres and
normalizes brain orientation and voxel resolutions. The standardization
framework is briefly outlined in this section.

2.1.1. Denoising and background suppression
To remove acquisition noise, a median filter was employed to re-

move spurious pixels while maintaining edge information. For back-
ground subtraction, the upper and lower 2% of the image histogram
were cropped to remove outlier intensities and a K-means classifier
(k=2) was used to segment the image into its foreground and back-
ground components. Morphological processing and filling was com-
pleted to ensure that foreground regions included the ventricles. The
background mask was used to zero-out all non-tissue pixels and back-
ground noise.

2.1.2. Bias field correction
Bias field correction was performed in a way similar to [35]. Each

image slice is divided by a low-pass filtered version of itself, which
represents the low frequency bias field artifact and therefore, sup-
presses the modulation of intensities from within the same tissue class.

2.1.3. Intensity standardization
A novel intensity standardization for MC FLAIR MRI was developed

in [30] and [31] and is used to align the histograms of all images in a
database to an atlas, yielding a consistent intensity interval for the same
tissues between images. This is accomplished by aligning the largest
mode of the histogram between volumes, which corresponds to the gray
matter (GM) and white matter (WM) intensities (broadly: the brain),
yielding similar histograms between images. More specifically, the in-
tensity of the GM/WM (brain) peak of the volume is determined, and a
scaling factor is computed by dividing the intensity of the atlas' brain
peak by the volume's brain peak. This factor is multiplied by the ori-
ginal volume such that the brain peak is now aligned with that of the
atlas. As an optional post-processing step, we perform what is called
slice refinement. In this stage, the peak of each slice is detected and
shifted to be aligned with the peak of the volume. This step is com-
pleted to ensure that the brain peaks of each slice are optimally aligned
with that of the volume. This work has been applied and validated on
350000 FLAIR MRI from more than 60 international imaging centres,
for 3 T and 1.5 T data, scanned by GE, Siemens and Philips scanners for
patients with dementia (ADNI) and vascular disease (CAIN), as outlined
in [30] and [31]. The Kullback Leibler (KL) distance [36] was used to
measure the similarity of the volume histograms in a set, before and
after standardization where a small distance indicates a high degree of
similarity. The KL divergence between the volume histograms and the
mean volume histogram per scanner/disease was reduced from
1.013 ± 1.635 to 0.094 ± 0.057 on average, for the original and
standardized data, respectively, indicating a high degree of similarity in
the intensity distributions in the standardized dataset. In addition, the
standard deviation of the KL distance was greatly reduced indicating
higher consistency in the standardized data.

Fig. 2 contains the volume histogram of the CAIN and ADNI datasets
used for brain extraction in this work, which were acquired by GE,
Siemens and Philips scanners, before and after denoising and intensity
standardization. Intensity standardization aligns histograms and makes
the intensity ranges and distributions more similar across datasets, in-
dicating that the same tissues are mapped to the same intensity ranges
regardless of the institution or scanner vendor used to acquire the data.
Some example images before and after standardization are shown in
Fig. 3 for various scanner vendors (note the same display range is used
to view all images). Prior to standardization, images have varying

Fig. 1. Overview of proposed whole volume FLAIR MRI brain extraction technique. Note: only seven image slices are shown for demonstrative purposes.

A. Khademi, et al. Magnetic Resonance Imaging xxx (xxxx) xxx–xxx

3



intensities and contrasts, for the same tissue classes. After standardi-
zation, the intensities from each tissue classes in all the images appear
to be more uniform over both datasets, and for all three scanner ven-
dors. These characteristics should allow for the robust application of
image analysis and machine learning algorithms to large multicentre
FLAIR MRI datasets.

2.1.4. Voxel resolution and patient orientation normalization
To ensure that voxel resolution and patient orientation was nor-

malized in the dataset, images were registered to the atlas using affine
registration based on the demons algorithm [37]. Squared differences
was used as the error metric, and optimization was achieved using
gradient descent. The number of iterations was limited to 100, and

Fig. 2. Intensity histograms of standardized FLAIR MRI volumes. Red: ADNI data, blue: CAIN data, black: average. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3. Original images and results from standardization steps. Each original image in shown, followed by its standardized version.
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images were transformed using cubic interpolation, as this method
minimizes transformation artifacts. Non-linear registration methods
were also investigated; however, it has been noted that with varying
levels of WML, strong distortions can occur in intensity-based regis-
tration. The output from this phase of the standardization pipeline is
normalized voxel sizes between images, and a similar position of the
brain in all images, therefore maximally aligning anatomy between
subjects.

2.2. Whole volume brain extraction

In this work, we focus on the design of a brain extraction tool for
FLAIR MRI that is robust to MC and multi-disease datasets of patients
with varying lesion loads based on an intuitive feature set. Because of
image standardization, we hypothesis that a simple feature set will
generate accurate and robust automatic whole volume brain segmen-
tations on MC data. Three groups of features are investigated that are
based on intensity, spatial or gradient based features. To increase
computational efficient and reduce memory consumption, the RF model
is constructed using a novel training voxel sample selection strategy.
This section will outline the feature extraction, parameters of the RF
used for voxel classification, the sampling strategy and post-processing.

2.2.1. Feature extraction
In this work, we focus on an intuitive feature set that is robust to MC

and multi-disease variability. Intuitive features are important for un-
derstanding system failures and analysis of the results on these features
can be used to improve performance. Also, simplified models and fea-
tures lend to clinical translation since implementation is real-time and
does not require specialized hardware systems to run. For classification,
28 features were extracted on a per-voxel basis for each volume. These
features can be grouped into three categories: Intensity, Spatial and
Gradient-based features. These features are described here.

2.2.1.1. Intensity-based features. Intensity standardization has
normalized the intensity of tissues across images. Tissues have been
mapped to similar intensity ranges yielding a consistent intensity
interval for tissues across volumes, as shown in Figs. 2 and 3.
Visually, since brain tissue is often darker than non-brain tissues (i.e.
skull, ears, eyes), intensity should be a highly discriminatory feature.
Therefore, the first feature considered is the voxel intensity and is
extracted as a feature, as in F1(x,y,z)= I(x,y,z). To further exploit
intensity information while minimizing noise, a smoothed version of
the image was also computed, and mean neighbourhood values of pixel
intensities were calculated for kernels of 5mm and 7mm in size,
resulting in F2(x,y,z) and F3(x,y,z). These kernel sizes were selected to
reduce noise significantly, while maintaining global intensity
characteristics.

2.2.1.2. Spatial location-based features. Spatial registration in the
standardization framework normalizes spatial coordinates across
images, resulting brain tissue locations being approximately
consistent across volumes. Therefore, as a feature, spatial location is a
natural choice. The positional features included the (x,y,z) coordinates
of each voxel, with F4(x,y,z)= x, F5(x,y,z)= y and F6(x,y,z)= z.

2.2.1.3. Gradient-based features. A key defining characteristic of brain
tissue is its smoothness relative to the surrounding tissues, which have
sharp edges. For example, the interior of brain regions have
approximately uniform intensity, while the skull and exterior tissues
have rapidly changing intensity characteristics. Additionally, although
the intensities of WML are typically similar to the skull, and non-brain
tissues, the edge content of WML are highly variable. Due to partial
volume averaging, the edge strength of WML boundaries are often low,
and dispersed [38]. These visual clues led to the investigation of edge-
based features. Ultimately, a set of features that can robustly

discriminate between brain and non-brain tissues, while identifying
WML as “brain” tissues is desired.

In order to capture edges of different sizes and scales, such as the
sharp brain boundary, while being robust to the softer boundary be-
tween WML and normal brain tissues, image gradients are investigated
for different sized neighbourhoods and scales. Larger neighbourhoods
will mostly likely be the most robust to WML edges which are more
diffuse, but smaller windows should capture the strong edge features
such as the brain-background boundary.

There are two types of gradient features calculated. The first is
based on the first order gradient magnitudes (gradient magnitude fea-
tures), computed from the average of three different-sized regions. The
second set of gradient features are computed from Gaussian scale space,
where the first order and second order gradients are computed for each
of the x, y and z directions separately, for three different scales. These
features are called the first order and second order Gaussian scale space
features, respectively.

For the gradient magnitude features, the magnitude of the image
gradient is calculated in 3D:
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where the digital gradient is approximated using the Sobel operator. To
capture edge information at different scales, the average gradient
magnitude of the neighbourhood surrounding each pixel was computed
for four different-sized regions to obtain the dominating edge strength
value for that region, while reducing noise. The four regions that were
considered had widths of 4, 5, 8 and 16mm, resulting in four gradient
magnitude features F7(x,y,z), F8(x,y,z), F9(x,y,z) and F10(x,y,z). These
scales were selected to capture both small and large-scale edge char-
acteristics.

As gradients are sensitive to noise, Gaussian scale space features
were also considered. Gaussian scale space edge detection involves
smoothing (convolving) the image with a Gaussian kernel of some
width σ, and then taking the gradient of the smoothed image. The
benefit of using Gaussian scale space to compute the gradient is the
ability to investigate edge content at different scales. Dependent on the
size of the smoothing kernel, it is possible to isolate larger or smaller
edge features. For example, a large σ smooths out small objects, while
retaining large objects that are of the same size approximately as σ.
Then, taking the gradient of the smoothed image examines the edge
content of these large objects. Therefore, Gaussian scale space allows us
to robustly investigate the edge content of different sized objects, and
edge strengths, which could be robust in differentiating between the
brain and non-brain tissues.

To extract Gaussian scale space gradient features, first, the 3D
Gaussian smoothing kernel is used:
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where σ is the standard deviation of the Gaussian function, which is
proportional to the scale of the objects being detected. Scales of 1, 2,
and 8mm were used because they present valuable local information of
each image at different scales. To compute the features at a specific
scale, the original image is convolved with the 3D Gaussian smoothing
kernel, and the edges are detected, as in

= ∇H x y z σ I x y x G x y z σ( , , , ) ( ( , , )* ( , , , )). (3)

Instead of looking at gradient magnitudes which combines the edge
information from all directions, for the Gaussian scale space features,
the individual gradient directions are separately investigated since the
images have been smoothed and these estimates should be less noisy.
The motivation behind this is to determine whether individual edge
directions are discriminating features. The individual gradients along
each direction were computed as features, where F11(x,y,z), F12(x,y,z),
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F13(x,y,z) are the gradient along the x-direction for the three different
scales, F14(x,y,z), F15(x,y,z), F16(x,y,z), are the gradients along the y-
direction for the three different scales and F17(x,y,z), F18(x,y,z),
F19(x,y,z) are the gradients along the z-direction for the three different
scales as well. In addition to these, the second order gradient was
computed, and the gradient along the respective directions, for each
scale was taken, resulting in F20(x,y,z), F21(x,y,z), F22(x,y,z), F23(x,y,z),
F24(x,y,z), F25(x,y,z), F26(x,y,z), F27(x,y,z), F28(x,y,z).

2.2.2. Classifier construction and training
The RF was constructed with optimized parameters for the number

of features, trees, and examples; see Section 3 for the experimental
design and results. The number of features analyzed at each node was
set to 2, since with a large number of trees, the strength of individual
trees is less relevant, and a higher value for this parameter would likely
increase the correlation between trees, which is known to increase
error [39]. The minimum number of training voxels present at a node
and leaf was set to 20 [21]. Generalization of the model was ensured by
implementing pruning after training, which is the process of randomly
removing some branches of each tree after training. This is known to
suppress any effects of over-fitting of the training set, therefore in-
creasing generalization to new data [39].

Due to the high correlation of voxels in an image volume, not all
voxels from the training volumes are needed to construct the classifier,
which reduces classifier complexity and computational load. Instead, a
selective training sampling strategy is explored which randomly sam-
ples voxels from the training set to build the model. Each voxel from
volumes within the training set is classified as positive, negative, or
restricted negative using the corresponding ground truth brain masks.
Positive voxels represented brain tissue and negative voxels represented
non-brain tissue. Restricted negative voxels represent negative cases
that lay on the brain-skull boundary which were identified early on as
the most difficult cases to correctly classify. The labels for all voxels are
provided by expert generated binary brain masks.

The training voxels are then randomly selected with an even
number of positive and negative cases which avoids biases associated
with class imbalances during training [39]. Within the negative class,
75% of negative examples are restricted to lay within 10mm of the
brain boundary. This is done since through preliminary experiments, it
was found that the most difficult negative examples to correctly classify
lay near the brain boundary where there is some intensity overlap be-
tween brain tissue and surrounding cerebrospinal fluid. Therefore, it is
desirable to expose the classifier to more of these challenging cases,
which should increase accuracy and make the classifier more ro-
bust [21]. To find the “restricted negative” training voxels, a combi-
nation of edge detection and morphology were used. This edge provides
a pool of voxel indices from which the difficult negative training in-
stances are sampled.

The number of training voxels per volume is evenly distributed (i.e.
for 150,000 training voxels with 76 training volumes, ∼1974 voxels
would be randomly selected from each volume). From each of the se-
lectively sampled voxels, the 28 features were computed. Compared to
entire volumes, which can have 512×512×45 voxels for example,
the proposed sampling strategy can be used to build models more
computationally efficiently and less memory intensive.

2.2.3. Post-processing
A simple post-processing scheme was implemented to reduce false

positives which are a common issue brain extraction approaches using
machine learning [21,23]. Initially, the brain masks b(x,y,z) were
eroded using a kernel size of 4 to remove small structures that were
connecting brain to non-brain tissues. Any small clusters of voxels not
connected to the central brain mass were then removed using con-
nectivity analysis. The remaining mask was dilated by a kernel size of 6
to reduce the impact of the initial erosion step, and this was followed by
hole filling. In contrast to similar approaches to brain extraction [21],

this is a very simple approach to false positive reduction.

2.3. Validation metrics

Segmentation accuracy was objectively compared to the ground-
truth using multiple metrics. To measure the amount of intersection
between a segmented object and the groundtruth, the Dice Similarity
Coefficient (DSC) [40] was calculated:

=
∩

+
DSC A B

A B
2| |
| | | |

,
(4)

where A and B are the binary masks of the brain for the groundtruth
reference and automatic segmentation, respectively. The Hausdorff
Distance (HD) was also calculated, which is a measure of maximum
surface-to-surface distance [41]. It is calculated as the sum of distances
between boundary points of the automatic segmentation and their
closest neighbours in the groundtruth mask. In contrast to the DSC, this
metric penalizes cases in which two overlapping objects still have dif-
ferent boundaries.

In addition to these metrics, classification accuracy was further
quantified using sensitivity (sens), also known as Overlap Fraction, and
is a measure of the true positive (TP) rate:

=
+

sens TP
TP FN

,
(5)

where FN are false negatives. In addition, the specificity (spec) was
calculated as a measure of the true negative (TN) rate:

=
+

spec TN
TN FP

,
(6)

where FP are false positives. Extra Fraction [42] was also calculated,
which is a measure of the false positive rate:

=
+

EF FP
TP FN

.
(7)

In an ideal automatic segmentation, the DSC, specificity, and sen-
sitivity measures should be close to one, while HD and EF should be
close to zero.

2.4. Datasets

In this work, two datasets are used for training and testing. The two
FLAIR MRI datasets represent a highly diverse set of data from two
studies that focus on research of vascular and dementia disease, col-
lected from over 30 international imaging centres. The FLAIR MRI data
is collected from GE, Philips and Siemens scanners, with widely varying
imaging parameters, with variable characteristics that adequately re-
present multi-institutional data. From these datasets, 156 volumes have
been manually annotated.

The first dataset is from the Canadian Atherosclerosis Imaging
Network (CAIN), a pan-Canadian study to study vascular disease [33].
Neuroimaging, neuropsychological assessments, and clinical data were
collected from patients across nine imaging centres in Canada, who
presented with symptomatic vascular disease. There is approximately
400 patients, with longitudinal follow up. Subjects have a mean age of
73.2 ± 8.25 years old, and roughly 56% are male. FLAIR MRI was
acquired for each subject in the study on a 3 T GE, Siemens or Philips
scanner in the axial plane, and with varying imaging parameters. In this
work, 135 image volumes (roughly 7000 image slices) were used for
training and testing, and the volumes selected were randomly chosen
from the entire dataset constrained to contain an equal distribution of
images from each of the scanner vendors and institutions. Acquisition
parameters for the CAIN dataset can be found in Table I. Note that there
are multiple values for TR/TE/TI and pixel spacing as represented by
the range found in the data used.

The second dataset used in this work is from the Alzheimer's Disease
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Neuroimaging Initiative (ADNI), which is an open source dataset for
researchers to analyze large amounts of patient data related to de-
mentia. Many patients have undergone a 3 T FLAIR MRI sequence on a
GE, Philips or Siemens scanner, and there are roughly 60 international
imaging centres where images have been collected. From these subjects,
21 subjects (roughly 1000 image slices) were randomly selected from
different centres, with 7 subjects selected evenly for each scanner
vendor (i.e. GE, Siemens, Philips). Random sampling resulted in at least
three volumes from each of the disease classifications in ADNI (i.e.
Normal, Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive
Impairment (LMCI), Subjective Memory Concerns (SMC), and AD). In
total, 3 Normal, 3 EMCI, 6 AD, 3 SMC and 6 LMCI FLAIR MRI volumes
were selected. The progression of the disease can affect the prevalence
of WML, as well as the morphological characteristics of the brain,
making this a diverse dataset that will be optimal for validating the
robustness of the framework. Acquisition parameters for the ADNI da-
taset used in this work are listed in Table I, where there were multiple
values for TR/TE/TI and pixel spacing as represented by the respective
ranges.

A single biomedical summer student was trained by a radiologist to
segment the brain tissue through two training sessions. The student
completed the manual outlines and the radiologist verified the manual
segmentations. Ground truth annotations were generated using the
Pathcore Sedeen Viewer1. Manual segmentations were generated as
XML coordinate files and converted to binary masks. This was com-
pleted for all 135 CAIN image volumes and 21 ADNI image volumes.

For intensity and spatial standardization, a FLAIR MRI atlas was
used2. The FLAIR template was created from 853 subjects, with a mean
age of 43.85 years ± 14.81, with 515 females. The subjects had
varying degrees of WML disease. The FLAIR sequence used echo time
(TE): 353ms, inversion time (TI): 1800ms, repetition time (TR):
5000ms, flip angle 180, echo train length: 221, voxel size: 0.7mm3.
Images were acquired in the axial plane on a Siemens 3 T scanner.

3. Results

In this section, the experimental design and results will be detailed.
Experiments are split into two different stages. The first phase focuses
on optimization of the classifier, and there are three experiments that
optimize the number of features, trees, and training examples. The
optimized classifier is then used for the second phase of experiments,
focused on performance evaluation of the brain segmentation results.
For this phase, there are four different experiments that evaluate the
effects of dataset (disease type) used to generate the model, standar-
dization, scanner vendor, and feature type on the segmentation accu-
racy.

The databases from where the FLAIR MRI data was sampled from,
and details on how the manual segmentations were generated are de-
scribed in the previous section. In total, there are 135 CAIN volumes
and 21 ADNI volumes with manual segmentations (roughly 8000 image
slices), which provide a strong representation of the multi-centre
variability of FLAIR MRI created by diverse acquisition parameters and
pathology. For all optimization experiments, classifiers were trained
and tested with 108 CAIN image volumes, while 27 volumes were re-
served for validation in the segmentation experiments. For the

segmentation experiments, a variety of training and testing datasets are
used, and are specifically detailed in the experiments. A summary of the
experiments, data organization, training and testing data splits, and
whether original or standardized data was used are detailed for the
optimization and segmentation experiments in Tables II and III, re-
spectively.

3.1. Classifier optimization experiments

In this subsection, the design and results for the classifier optimi-
zation experiments are detailed. In the optimization phase, three
parameters are optimized for the classifier, including the number of:
extracted features per voxel, trees, and training examples. Classifiers
were trained and tested with 108 CAIN image volumes, while 27 vo-
lumes were reserved for validation in the segmentation experiments.
For the optimization experiments, the remaining set of 108 CAIN vo-
lumes were split into 76 volumes for training, and 32 for testing (this is
an approximation of the 70/30 split common in the machine learning
approaches [39]). The training and testing volumes were randomly
shuffled to ensure that parameters were not dependent on any specific
training set, and all results are reported as an average of five runs for
each experiment. Additionally, where applicable, a separate model was
generated using the standardized data, and a separate model was gen-
erated using the original data in order to examine the utility of the
standardization approach. To summarize, the final, optimized classifier
for standardized data was constructed using 15 features, 200 trees and
trained with 150,000 training voxels. This section will show these re-
sults.

3.1.1. Feature selection
A set of 28 features are extracted from every voxel in the image

volumes. It is useful to reduce the dimensionality of this set to reduce
computational costs, as well as to increase accuracy by reducing noise.
In addition, the authors hypothesize that due to standardization, a small
feature set should yield good performance due to the reduced varia-
bility. To determine the most discriminatory features, the Minimum-
Redundancy Maximum-Relevancy (mRmR) algorithm was used [43].
This approach calculates mutual information between the features and
ranks the features in order of importance. Although feature importance
is measured, the number of these features that should be used to yield
optimal performance of the classifier is not reported by the mRmR al-
gorithm. To overcome this and determine the optimal number of fea-
tures to extract per voxel, the classifier was trained with the top N
features from mRmR, and classification accuracy (ACC) was calculated
by:

=
+

+ + +
ACC TP TN

TP TN FP FN
.

(8)

The top N features from the mRmR algorithm that results in the
greatest accuracy will be retained and used in the final, optimized
classifier. To determine the optimal feature subset, a model was trained
with 150 trees and 80,000 examples, for original and standardized data
separately. The classification accuracy, as a function of the top N fea-
tures determined by mRmR, for both standardized and original data is
shown in Fig. 4. According to this graph, two things are deduced. First,
it can be seen that standardization yields roughly 10% increase in
classification accuracy over all feature combinations. Second, the op-
timal feature set for the standardized data (highest classification

Table I
Summary of datasets and acquisition parameters. All images were acquired at 3 T.

Database Disease No. volumes Centres Scanner vendors TR (ms) TE (ms) TI (ms) Pixel spacing (mm) Slice thickness (mm)

CAIN Vascular 135 (∼7000 slices) 9 GE, Philips, Siemens 8000–11,000 117–150 2200–2800 0.4286–1 3
ADNI Dementia 21 (∼1000 slices) 21 GE, Philips, Siemens 650–11,900 20–193 2000–2800 0.7813–1.0156 5

1 https://pathcore.com/sedeen/
2 https://brainder.org/download/flair/
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accuracy) was found to be 15 (classification accuracy of
80.15% ± 8.97). The top 15 selected features were (in order):
smoothed intensity with a kernel of 7mm - F3(x,y,z), z coordinate -
F6(x,y,z), x coordinate - F4(x,y,z), y coordinate - F5(x,y,z), pixel intensity
- F1(x,y,z), gradient magnitude at a scale of 16mm - F10(x,y,z), gradient
magnitude at a scale of 5mm - F8(x,y,z), smoothed intensity with a
kernel of 5mm - F2(x,y,z), second order Gaussian scale features in the y
direction at 1mm - F23(x,y,z), gradient magnitude at a scale of 8mm -
F9(x,y,z), second order Gaussian scale features in the x direction at
1mm - F20(x,y,z), second order Gaussian scale features in the y direc-
tion at 8mm - F25(x,y,z), second order Gaussian scale features in the z
direction at 8mm - F28(x,y,z), gradient magnitude at a scale of 4mm -
F28(x,y,z), and second order Gaussian scale features in the y direction at
2mm - F24(x,y,z).

These features demonstrate several important characteristics of the
images: (i) that intensity and position of the brain are important to
classification, which can be attributed to the normalization of these
features via standardization; (ii) that the Gaussian derivatives at
varying scales capture diverse local representations edge content which
assists in classification; and (iii) that the gradient edge magnitude fea-
ture indicates that texture of the brain (smoothness) is a highly dis-
criminatory feature, but also that the large neighbourhood kernel is
required to be robust.

These results are compared to those obtained by the classifier
trained on original images. As can be seen in Fig. 4, the original image

classifier achieved a lower accuracy than those trained on standardized
images, which likely can be attributed to the variability in the images.
To optimize the next parameter (number of trees) for the original image
classifier, 21 features were used, based on the performance reported in
Fig. 4.

3.1.2. Number of trees
At its inception, it was claimed that a RF could be constructed with

any number of trees, as they do not overfit [32]; but recent work has
shown that they can overfit noisy datasets [44]. For this reason, ex-
periments were conducted with varying numbers of trees (from one to
500), and the setting that yielded the best performance was selected for
the final classifier.

For this experiment, the models were trained with the optimized
feature set and 80,000 examples. The number of trees did not have a
significant impact on the accuracy of the classifier (average accuracy
was 94.76% ± 1.26). This is likely due to standardization, as a low
amount of variability in image properties reduces noise in the feature
set, making individual trees more robust. Because of this, 200 trees
were selected for experiments that used standardized data, as this
yielded optimal results in similar work [21].

The model trained on original, unstandardized images achieved a
much lower classification accuracy on average (77.66% ± 1.37), with
a maximum accuracy of 79.56% using 300 trees. Similar to the previous
experiment, this is likely due to the fact that the classifier cannot
generalize to the large range of variability in MC datasets that is present
in the original, unstandardized data. For the next parameter optimiza-
tion experiment (number of training examples), 300 trees were used for
the experiments on original data.

3.1.3. Number of training examples
The number of training examples was also analyzed, as there is

trade-off between classification accuracy and overfitting, as well as
computational complexity. It is known that increased complexity of a
classifier can eventually lead to an increase in error as well [39]. A
range of values were used, from 100 to 500,000. The number of ex-
amples with the greatest accuracy was implemented in the final clas-
sifier. As this was the last classifier parameter to be optimized, sensi-
tivity and specificity were also analyzed. In Fig. 5, the optimal
sensitivity and specificity were achieved with 150,000 examples (while
accuracy was saturated for all other values), and so this parameter was
selected for the final classifier. This number will likely yield good
generalization across datasets without overfitting.

As seen in Fig. 5, the performance of the original image-trained
classifier was compared the performance achieved using standardized
images. Although the accuracy and specificity are comparable, the
classifier trained on original images yielded a much lower sensitivity
rate, which indicates a low rate of true positives. The superior

Table II
Summary of data organization for classifier optimization experiments.

Experiment Analysis Original/standardized Training/testing (# volumes)

Feature selection Optimization Original, standardized CAIN 108 - with 76/32 split
No. trees Optimization Original, standardized CAIN 108 - with 76/32 split
No. examples Optimization Original, standardized CAIN 108 - with 76/32 split

Table III
Summary of data organization for segmentation experiments.

Experiment Analysis Original/standardized Training data (# volumes) Testing data (# volumes)

CAIN (vascular disease) model Segmentation Original, standardized CAIN (108) CAIN (27), ADNI (21)
ADNI (dementia disease) model Segmentation Original, standardized ADNI (21) CAIN (27)
Effect of scanner vendor [×3 vendors] Segmentation Original, standardized CAIN (36) CAIN (72)
Feature effects Segmentation Original, standardized CAIN (108) CAIN (27)

Fig. 4. Optimization of feature set, as measured by classification accuracy.
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performance of classifiers trained on standardized data for all optimi-
zation steps demonstrates that thorough standardization of image da-
tasets can greatly improve the accuracy and robustness of subsequent
analysis.

3.2. Segmentation experiments

In this section, the segmentation results for standardized and ori-
ginal data, as a function of feature type, scanner vendor and disease will
be explored. Example brain extractions across datasets are shown in
Fig. 6, where the top row shows the original images with the manual
segmentation outlines in red, and the bottom row has the resultant
extracted brains for the corresponding image slice. The example images
have varying disease levels (WML burdens, enlarged ventricles,
atrophy), intensity ranges and sizes, acquired across three different
scanner vendors. Despite the large variability in the data, the brain has
been robustly extracted demonstrating the ability of the method to
adapt to a wide variety, diverse set of images.

Several experiments were conducted to validate performance in
terms of segmentation accuracy. Data splits can be found in Table III.

For all experiments the data for training and validation were carefully
selected to ensure that the optimized classifier was validated using the
unseen, validation sets. In the first experiment “CAIN (Vascular Dis-
ease) Model”, the 108 CAIN image volumes that were used to optimize
classification parameters were used for training, while the reserved 27
CAIN and 21 ADNI volumes were utilized for segmentation validation
experiments for original and standardized data separately. These tests
examine the model's performance trained using a multicentre, vascular
disease dataset. A similar experiment was conducted for the “ADNI
(Dementia Disease) Model”, where the ADNI dataset was used to gen-
erate the model, and the reserved CAIN data was used for validation to
investigate the effects of training solely on multicentre, dementia dis-
ease cases. The “Effect of Scanner Vendor” experiment was based on the
training dataset (108 CAIN image volumes), where 36 CAIN volumes
from a single scanner type was used to develop the model, and the
remaining 72 image volumes from the two other (unseen) scanner
vendors (36 per scanner type) were used to test the generalization
capability to other scanners. In these cases, the segmentation perfor-
mance as a function of scanner type (GE, Philips, Siemens) was ob-
served. The last experiment, “Feature Effects”, examines the effect of
each of the feature groups, using the original 108 CAIN volumes for
training, and the held out 27 CAIN volumes for validation. The results
are shown and discussed for each experiment and effect separately
below.

3.2.1. Generalization and the effects of standardization
Two classifiers were generated to analyze the effect of standardi-

zation on segmentation performance: one trained using original data
and one trained with standardized data. Both classifiers were con-
structed using the optimized parameters determined by the Classifier
Optimization Experiments in Section 3.1. The experiments were con-
ducted using both CAIN and ADNI training data separately (108 and 21
training volumes, respectively). Classifiers were tested on unseen da-
tasets (CAIN and ADNI, with 27 and 21 testing image volumes, re-
spectively), providing insight into the framework's ability to generalize
to different diseases in multicentre data. Table IV contains a summary
of performance metrics for these segmentation experiments, and gra-
phically as boxplots for each metric and method in Fig. 8.

First, the results of standardized versus original images are com-
pared. Over all metrics and models, the standardized data yielded
better results as compared to the unstandardized data. The DSC,

Fig. 5. Optimization of the number of training examples for the RF classifier.

Fig. 6. Sample segmentation results across datasets for different scanners and disease classifications. For each example, the original image and groundtruth outline is
shown, followed by the automated segmentation.
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sensitivity, and specificity were all increased using standardized data,
indicating better agreement with the groundtruth segmentations. In the
case of HD, the smaller distance achieved by the standardized data
demonstrates that the fine details of the sulci were better localized than
with the original data, and a lowered EFmeasurement indicates that the
FP rate was reduced. Fig. 7 demonstrates this point further, as it shows
the differences between outlines of the groundtruth and automated
segmentations. As can be seen, the automated outline follows the sulci
closely. Additionally, the standard deviation over all tests is much lower
with the standardized data, indicating more reliable and consistent
segmentations. This is important since this indicates that the perfor-
mance on new data will be reproducible. Due to the variability in image
properties present in the original data, the classifier trained on original
images were not as robust and the RF classifier was not able to gen-
eralize as well. The improvement in segmentation accuracy following
standardization implies that standardization reduced the variability in
images that previously had a negative effect on the RF classifier. This is
an indication that standardization is beneficial to automated algorithms
for analysis; as MC variability is mitigated, the algorithms more robust
and accurate.

Considering the standardized results, for the different diseases and
models, the CAIN model, tested on the CAIN validation set yielded an
impressive DSC of 91% ± 1.52 across different scanner types and
imaging acquisition parameters. When using this same model and

testing with the ADNI data, the results are slightly reduced to DSC of
86.2% ± 5.4. Although the results are still high, the slight drop in
performance can be attributed to perhaps differences in brain mor-
phology of patients with dementia disease (compared to those with
vascular disease). Vascular disease can be associated with strokes, and
large lesion burdens, whereas dementia may be characterized by brain
atrophy with varying lesion loads. Classifiers trained on the ADNI da-
taset generated similar results with a DSC of 86.2% ± 5, and the slight
difference in performance could be attributed to the same reasoning as
above. Also, due to the size of the ADNI training set being 20% of the
size of the CAIN training set (21 images versus 108 images), there were
less examples for training, which could have also affected results.
Overall, for a variety of scanner types, centres and disease, the results
on standardized data are extremely promising for multicentre, multi-
disease FLAIR MRI data.

3.2.2. Effect of scanner vendor
In these sets of experiments, the effects of training using one scanner

vendor's data, and testing on the other two vendor's data is analyzed.
The classifier was trained on a dataset of 36 image volumes from each
vendor, and tested on the remaining two (36 image volumes each). The
three vendors under consideration were GE, Siemens and Philips. This
experiment was conducted using both original and standardized data.
Due to standardization, the classifier should yield better segmentation

Table IV
Summary of segmentation metrics across MC and multi-disease datasets.

Data type Exp. Training data Testing data DSC HD Sensitivity Specificity EF

CAIN Model CAIN (108) CAIN (27) 77.68 ± 22.5 5.26 ± 8.38 84.1 ± 24.5 98.6 ± 0.77 7.8 ± 4.4

Original CAIN Model CAIN (108) ADNI (21) 75.1 ± 17.4 4.62 ± 4.44 90.0 ± 20.1 96.6 ± 1.9 19.6 ± 11.6

ADNI Model ADNI (21) CAIN (27) 65.2 ± 29.9 8.0 ± 8.9 68.8 ± 32.2 99.3 ± 0.51 4.4 ± 3.43

CAIN Model CAIN (108) CAIN (27) 91 ± 1.52 1.11 ± 0.8 96.9 ± 2.1 98.4 ± 0.62 6.55 ± 3.1

Standardized CAIN Model CAIN (108) ADNI (21) 86.2 ± 5.4 3.71 ± 2.83 95.5 ± 3.1 97.5 ± 1.6 11.1 ± 6.46

ADNI Model ADNI (21) CAIN (27) 86.2 ± 5 2.07 ± 1.29 89.5 ± 6.7 99.1 ± 0.53 3.7 ± 2.5

Fig. 7. Example segmentations from the CAIN dataset, where the green line represents the manual groundtruth delineation, and the red line is the automated
segmentation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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accuracy using standardized images, as there should now be little
variability in characteristics between images acquired on different
scanners. The effect of scanner vendor on segmentation accuracy is
graphically shown in Fig. 9. For each of the scanner vendor-dependent
trained classifiers, several observations can be made and these are
highlighted here for each model developed.

GE-trained classifier:

• On the original, unstandardized data model, the DSC and sensi-
tivity values were low and/or highly variable, and the HD was
lower and highly variable also when tested on original data from
Philips and Siemens scanners indicating poor generalization;

• For the standardized data, the DSC and sensitivity were increased
and HD was reduced for both Philips and Siemens data and the
variability in these metrics were significantly reduced, indicating
better segmentations and generalization, as well as consistency
and reliability;

• The specificity decreased slightly for the standardized Siemens
data (TN), which likely came at the cost of increased sensitivity
(TP); and

• HD and EF both showed improvements using standardized images,
indicating more accurate segmentations around the brain

boundary, as the distance between the segmentation borders and
FP rate were reduced.

Philips-trained classifier:

• The classifier could not generalize at all to the original GE data,
and yielded dismal results due to over-segmentation (DSC and
sensitivity were less than 10%, and specificity was 100%) in-
dicating generalization failure;

• The classifier struggled with original Siemens data (DSC and
sensitivity less than 80%) but this was improved with standardi-
zation as the values were both increased, and the variability was
reduced thereby showing more reliability on standardized data;

• Using the standardized data, the EF increased slightly in both
Siemens and GE data due to an increase in sensitivity (TP), which
introduced some false positives (as measured by EF); however at a
rate of 3%, this increase is appropriate given a large increase in
sensitivity (TP)

• On standardized data, the HD metric was improved as compared
to the model generated with original data in both other scanners
indicating more detailed and refined segmentations using the
standardized data.

Siemens-trained classifier:

• Standardization increased classifier performance on both scanner

Fig. 8. Overall segmentation metrics across multiple datasets for Experiments 4 and 5. O stands for original, non-standardized data, and S indicates standardized
data; CAIN and ADNI represent the validation datasets, respectively, and (A) represents the experiment where ADNI was used as the training set.
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vendors (DSC, sensitivity, and HD improved), and the variability
of each of these metrics was greatly reduced indicating more
consistent and reproducible segmentation results; and

• Even with standardized data, the Siemens classifier could not
generalize completely to the Philips data, as shown by the in-
crease of FP rate (EF of 17%).

Over all models, testing on data generated from unseen scanner
vendors yielded poorer performance on the original images as com-
pared to the standardized images, demonstrating the effectiveness of
the standardization methodology. A common result across these ex-
periments is that there was generally an improvement in all metrics
with standardization indicating higher quality brain segmentations,
except for EF in some cases. Because standardization increased sensi-
tivity, which is a measure of the TP rate, this likely increased the rate of
positive cases in general, which lead to the small increase in EF. This
small increase in FP is a trade-off for the significant increases to the TP

rate. However, the variability over all metrics were greatly reduced,
thereby indicating more reliable and consistent results.

These experiments highlight how segmentation using machine
learning models can greatly be effected by the type of scanning device
used to acquire FLAIR MRI in multi-institutional datasets. Despite the
varying imaging parameters that can create intensity and contrast dif-
ferences for the same sequence, this scanner-vendor dependent effect is
likely due to more than this. It is probably caused by the differences in
hardware, software and reconstruction algorithms used to create the
images, which are used by companies as a competitive advantage, and
therefore are proprietary. Depending on the way the images are re-
constructed, there can be highly variable image properties and char-
acteristics, including contrast, spatial correlation in noise, imaging ar-
tifacts, and more [28]. These results demonstrate that to create
consistency in the multi-institutional FLAIR MRI datasets acquired by
different vending hardware and software solutions, it is paramount that
MC variability be reduced to improve stability and generalizable of

Fig. 9. Effect of scanner vendor on segmentation accuracy. The first column was trained on GE images; the second on Philips, and the third, Siemens. (O) indicates
original data, and (S) indicates standardized data.
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brain segmentation classifiers.

3.2.3. Effect of feature type
There were three types of features investigated in this work, in-

cluding intensity-based, spatial-based and gradient-based features. To
determine the importance of each of these three feature groups, three
classifiers were trained separately with each of the feature types, for
standardized and unstandardized data. Analysis of the effects of these
features will shed light into which features are the most important for
classification, as well as how much image standardization played a role
in automated segmentation across diverse datasets.

In this experiment, the effects of different feature types used for
classification was investigated on both original and standardized
images in the CAIN dataset, and results can be found in Table V. As can
been seen, standardized features yielded better results than those gen-
erated from the original images. Additionally, in both sets of experi-
ments, the spatial features yielded the worst results, with results im-
proving with intensity- and gradient-based features. In the standardized
data, the poor performance of the spatial features can likely be attrib-
uted to suboptimal registration performance. FLAIR MRI are difficult
images to register, since there is no contrast between WM and GM,
which are usually the defining features in registration techniques fo-
cused on T1 or T2 MRI. However, it should also be noted that spatial-
based features yielded the best specificity and EF scores for standar-
dized data, while achieving the lowest scores on all other metrics. This
indicates that the model tended to over-segment, which would give the
best specificity and EF scores (which are measurements of TN and FP,
respectively), while giving low scores in sensitivity (TP measurement),
DSC (similarity), and HD (distance between the segmentations). Inter-
estingly, on average, the gradient-based features performed the best,
and slightly better than the intensity-based features, despite the stan-
dardized intensity scale. We hypothesis that the texture differences
between classes (brain and non-brain) must be much more of a dis-
criminating and consistent feature across the datasets. In some of the
Siemens data, the skull can be noted to be darker (see Fig. 6 (c)), which
may be due to a fat suppression sequence, and could have contributed
to a reduction in performance of just the intensity-based features.
Gradients, on the other hand, consider relative differences in intensity,
or contrasts between structures, which must be more a consistent fea-
ture across datasets, for standardized data.

4. Discussion

FLAIR MRI has been gaining popularity for the analysis of neuro-
degenerative disease, which is primarily due to the superior visualiza-
tion of WML with this sequence. However, there is little work on the
development of algorithms solely for this modality. To address this
lapse, this work presents a novel approach to brain extraction for
multicentre (MC) FLAIR MRI. The framework was validated on MC and
multi-disease datasets, which included images from CAIN (vascular
disease) and ADNI (dementia disease). By creating a framework solely

for FLAIR, the need for co-registration to T1- and T2-weighted images
has been eliminated, therefore reducing image acquisition costs and
errors introduced due to registration. This framework also provides a
gateway for the robust application of existing WML analysis algorithms
to large, MC datasets, from which neuroimaging biomarkers can be
correlated with clinical outcomes. This work represents one of the first
approaches to segmentation of MC and multi-disease neurological
FLAIR MRI using solely the FLAIR modality.

One of the major novelties of this approach surrounds the pre-pro-
cessing of images using standardization that reduces variability in MC
datasets allowing for intuitive, simple features sets to produce robust
and accurate segmentations. Results demonstrate that the standardi-
zation of images is extremely beneficial for the segmentation of these
diverse datasets, and also that the framework generalizes well to other
diseases from which it was trained.

The use of standardization to improve segmentation accuracy has
been previously mentioned, but not addressed in machine learning
approaches to brain segmentation [21]. Other works address the fact
that scanner manufacturers have an effect on accuracy [23], and pro-
posed that models should be trained on MC data for increased robust-
ness. This work addressed both of these concerns. By standardizing the
images, segmentation accuracy is increased and the results were much
more consistent and reliable. In [21], a RF was used to assign prob-
abilities to pixels along the brain boundary, followed by the application
of a probabilistic generative model has used to create the final classi-
fication. In [23], a convolutional neural network was used, and this
model is generally regarded as being very complex [45]. In this work,
an RF was constructed to be minimally complex to increase general-
ization accuracy, and simple post-processing was conducted using
mathematical morphology. This is a testament to the fact that stan-
dardization of images can greatly simplify segmentation algorithms,
while maintaining, or increasing, segmentation accuracy and robust-
ness.

The framework was tested across diverse datasets in order to vali-
date the algorithm's robustness and accuracy when faced with a large
amount of variability in image properties. Results showed that image
standardization is extremely beneficial to processing of MC images, as
demonstrated by the segmentation accuracy achieved using original
versus standardized data. Using the CAIN dataset, standardization had a
substantial effect on DSC (77.7% versus 91% for original and standar-
dized data, respectively), sensitivity (84.1% versus 96.9%), HD (5.26
versus 1.11), and EF (7.8% versus 6.5%). This indicates that the false
negative rate was greatly reduced using standardized data, therefore
increasing the accuracy of the overall segmentation. The specificity was
also increased (84.1% versus 96.9%), which indicates that the stan-
dardized model increased the TN rate. When applied to databases
containing other diseases, segmentation accuracy was maintained (DSC
of 91% and 86.2% for ADNI), indicating that the framework was robust
to the morphological differences in these images due to varying disease
manifestations.

It has been noted that scanner vendors may have an effect on

Table V
Segmentation results on original and standardized CAIN images using intensity-, spatial-, and gradient-based features.

DSC (%) HD (mm) Sensitivity (%) Specificity (%) Extra fraction (%)

Intensity 74.6 ± 21.3 5.44 ± 8.40 78.6 ± 22.8 99.1 ± 0.8 5.0 ± 5.1

Original Spatial 64.4 ± 19.6 10.9 ± 4.9 70.0 ± 20.4 99.3 ± 0.52 3.83 ± 3.0

Gradient 77.9 ± 22.3 4.78 ± 8.40 84.3 ± 24.6 98.6 ± 0.80 7.67 ± 4.3

Intensity 84.5 ± 5.7 1.37 ± 2.5 86.9 ± 7.3 99.4 ± 0.53 2.7 ± 2.5

Standardized Spatial 58.6 ± 5.5 7.0 ± 1.86 59.8 ± 5.9 99.6 ± 0.40 2.0 ± 2.3

Gradient 90.3 ± 2.4 1.44 ± 2.5 96.3 ± 3.0 98.4 ± 0.7 6.7 ± 3.2
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segmentation accuracy due to differences in acquisition artifacts and
reconstruction algorithms [29]. In this work, the classifier was trained
on images acquired by one scanner manufacturer, and applied to others
in order to analyze these differences. In general, it was found that prior
to standardization, all vendors struggled to generalize to the others; but
that they were successful following standardization. In particular, it
was found that Philips data could not generalize to GE data, which
indicates that there are subtle characteristics in these images that may
not be apparent to a human observer, but can greatly confound auto-
mated algorithms. Across all cases, standardization increased segmen-
tation accuracy to acceptable levels; for example, DSC was increased
from 44% to 84% when applying GE data to Philips. In a more radical
case, standardization of Philips data increased the DSC from 2% to 88%
for GE data. This truly highlights the necessity and utility of standar-
dization for the analysis of MC data.

Three intuitive feature groups were used, based on the intensity,
spatial locations and gradient of positive (brain) and negative (non-
brain) voxels. From these experiments, it was clear that standardization
is beneficial to the segmentation task, as the performance metrics im-
proved for all the feature groups for standardized data, in comparison
to the original. Interestingly, using the standardized data, the strongest
feature group that yielded the highest segmentation performance on
their own were the gradient features. This could indicate that relative
differences in intensities are more discriminating than absolute in-
tensity, since intensity-based features yielded lower segmentation re-
sults than that achieved by the gradient features.

In all, the framework requires approximately 7min of single-
threaded run time on an i7 intel processor with 16 GB of RAM for
standardization, feature extraction, and classification; however, nearly
half of this time is spent performing image registration. Future work
will include optimization of image registration to streamline the algo-
rithm or the investigation of brain extraction that excludes the spatial
coordinates as a feature. For reference, in [23], a convolutional neural
network was implemented using Graphics Processing Units (GPUs), and
computation took an average of 40 to 60 s. In a clinical setting, where
GPU computation may not be available, these same calculations could
take up to 12 times longer on conventional CPUs [46]. In addition, the
authors plan to apply this framework to large databases of FLAIR MRI;
to the knowledge of the authors, little work has been done in quanti-
fying disease in FLAIR images exclusively, with the exception of seg-
mentation of WML. With this framework, novel imaging biomarkers
from FLAIR MRI can be discovered hopefully yielding new insights into
neurodegenerative disease.

5. Conclusion

This work proposes a fully-automated, whole volume brain extrac-
tion methodology for multicentre (MC) FLAIR MRI. The pipeline con-
sists of image standardization, which reduces acquisition noise and
artifacts, standardizes the intensity scale and spatially normalizes voxel
coordinates of brain tissue across datasets, followed by feature extrac-
tion by intensity-, gradient- or spatial location-based features and
classification with a random forest. Using a novel sampling strategy, the
classifier is trained using selective voxels from the positive and negative
classes, for both original and standardized data separately. Two multi-
centre, international datasets are used to optimize classifier parameters
and analyze segmentation performance. The first dataset is from the
Canadian Atherosclerotic Imaging Network (CAIN) and contains images
from subjects with vascular disease and 135 volumes (roughly 7000
image slices) with ground truths were used for training, testing and
validation. The second dataset used is from Alzheimer's Disease
Neuroimaging Initiative (ADNI), and 21 volumes (approximately 1000
image slices) were used for training and validation. Experiments were
conducted to optimize classifier parameters, and determine segmenta-
tion accuracy as a function of data type (standardization vs. original
data), scanner type, feature types and disease. Across all experiments,

the segmentation results demonstrate that standardization significantly
improves the performance across instructions, features, scanner ven-
dors and disease types, thereby proving the necessity and efficiency of
the proposed standardization methodology for multicentre (MC) FLAIR
MRI. With this work, the need for registration to T1- and T2-weighted
images is eliminated, reducing acquisition costs and dependence on
registration which introduces error. Future work will involve the ap-
plication of this framework to large, MC datasets to investigate novel
neuroimaging biomarkers from FLAIR MRI related to neurodegenera-
tive diseases.
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